Cell Membrane Is Impaired, Accompanied by Enhanced Type III Secretion System Expression in Yersinia pestis Deficient in RovA Regulator

نویسندگان

  • Fengkun Yang
  • Yuehua Ke
  • Yafang Tan
  • Yujing Bi
  • Qinghai Shi
  • Huiying Yang
  • Jinfu Qiu
  • Xiaoyi Wang
  • Zhaobiao Guo
  • Hong Ling
  • Ruifu Yang
  • Zongmin Du
چکیده

BACKGROUND In the enteropathogenic Yersinia species, RovA regulates the expression of invasin, which is important for enteropathogenic pathogenesis but is inactivated in Yersinia pestis. Investigation of the RovA regulon in Y. pestis at 26 °C has revealed that RovA is a global regulator that contributes to virulence in part by the direct regulation of psaEFABC. However, the regulatory roles of RovA in Y. pestis at 37 °C, which allows most virulence factors in mammalian hosts to be expressed, are still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS The transcriptional profile of an in-frame rovA mutant of Y. pestis biovar Microtus strain 201 was analyzed under type III secretion system (T3SS) induction conditions using microarray techniques, and it was revealed that many cell-envelope and transport/binding proteins were differentially expressed in the ΔrovA mutant. Most noticeably, many of the T3SS genes, including operons encoding the translocon, needle and Yop (Yersinia outer protein) effectors, were significantly up-regulated. Analysis of Yop proteins confirmed that YopE and YopJ were also expressed in greater amounts in the mutant. However, electrophoresis mobility shift assay results demonstrated that the His-RovA protein could not bind to the promoter sequences of the T3SS genes, suggesting that an indirect regulatory mechanism is involved. Transmission electron microscopy analysis indicated that there are small loose electron dense particle-like structures that surround the outer membrane of the mutant cells. The bacterial membrane permeability to CFSE (carboxyfluorescein diacetate succinimidyl ester) was significantly decreased in the ΔrovA mutant compared to the wild-type strain. Taken together, these results revealed the improper construction and dysfunction of the membrane in the ΔrovA mutant. CONCLUSIONS/SIGNIFICANCE We demonstrated that the RovA regulator plays critical roles in the construction and functioning of the bacterial membrane, which sheds considerable light on the regulatory functions of RovA in antibiotic resistance and environmental adaptation. The expression of T3SS was upregulated in the ΔrovA mutant through an indirect regulatory mechanism, which is possibly related to the altered membrane construction in the mutant.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative analysis of the regulation of rovA from the pathogenic yersiniae.

RovA is a MarR/SlyA-type regulator that mediates the transcription of inv in Yersinia enterocolitica and Y. pseudotuberculosis. In Y. pseudotuberculosis, rovA transcription is controlled primarily by H-NS and RovA, which bind to similar regions within the rovA promoter. At 37 degrees C, rovA transcription is repressed by H-NS. Transcription of rovA results when RovA relieves H-NS-mediated repre...

متن کامل

RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague.

The pathogenic species of Yersinia contain the transcriptional regulator RovA. In Yersinia pseudotuberculosis and Yersinia enterocolitica, RovA regulates expression of the invasion factor invasin (inv), which mediates translocation across the intestinal epithelium. A Y. enterocolitica rovA mutant has a significant decrease in virulence by LD(50) analysis and an altered rate of dissemination com...

متن کامل

Molecular Characterization of Transcriptional Regulation of rovA by PhoP and RovA in Yersinia pestis

BACKGROUND Yersinia pestis is the causative agent of plague. The two transcriptional regulators, PhoP and RovA, are required for the virulence of Y. pestis through the regulation of various virulence-associated loci. They are the global regulators controlling two distinct large complexes of cellular pathways. METHODOLOGY/PRINCIPAL FINDINGS Based on the LacZ fusion, primer extension, gel mobil...

متن کامل

Reciprocal regulation of Yersinia pestis biofilm formation and virulence by RovM and RovA

RovA is known to enhance Yersinia pestis virulence by directly upregulating the psa loci. This work presents a complex gene regulatory paradigm involving the reciprocal regulatory action of RovM and RovA on the expression of biofilm and virulence genes as well as on their own genes. RovM and RovA enhance and inhibit Y. pestis biofilm production, respectively, whereas RovM represses virulence in...

متن کامل

A LysR-Type Transcriptional Regulator, RovM, Senses Nutritional Cues Suggesting that It Is Involved in Metabolic Adaptation of Yersinia pestis to the Flea Gut

Yersinia pestis has evolved as a clonal variant of Yersinia pseudotuberculosis to cause flea-borne biofilm-mediated transmission of the bubonic plague. The LysR-type transcriptional regulator, RovM, is highly induced only during Y. pestis infection of the flea host. RovM homologs in other pathogens regulate biofilm formation, nutrient sensing, and virulence; including in Y. pseudotuberculosis, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010